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ABSTRACT

This study demonstrates how model bias can adversely affect the quality assessment of an ensemble pre-

diction system (EPS) by verification metrics. A regional EPS [Global and Regional Assimilation and Pre-

diction Enhanced System-Regional Ensemble Prediction System (GRAPES-REPS)] was verified over a

period of one month over China. Three variables (500-hPa and 2-m temperatures, and 250-hPa wind) are

selected to represent ‘‘strong’’ and ‘‘weak’’ bias situations. Ensemble spread and probabilistic forecasts are

compared before and after a bias correction. The results show that the conclusions drawn from ensemble

verification about the EPS are dramatically different with or without model bias. This is true for both en-

semble spread and probabilistic forecasts. The GRAPES-REPS is severely underdispersive before the bias

correction but becomes calibrated afterward, although the improvement in the spread’s spatial structure is

much less; the spread–skill relation is also improved. The probabilities become much sharper and almost

perfectly reliable after the bias is removed. Therefore, it is necessary to remove forecast biases before an EPS

can be accurately evaluated since anEPS deals only with randomerror but not systematic error. Only when an

EPS has no or little forecast bias, can ensemble verification metrics reliably reveal the true quality of an EPS

without removing forecast bias first. An implication is that EPS developers should not be expected to in-

troduce methods to dramatically increase ensemble spread (either by perturbation method or statistical

calibration) to achieve reliability. Instead, the preferred solution is to reduce model bias through prediction

system developments and to focus on the quality of spread (not the quantity of spread). Forecast products

should also be produced from the debiased but not the raw ensemble.

1. Introduction

Prediction of predictability is the primary mission

of an ensemble prediction system (EPS). An EPS is

designed to quantify the predictability of the atmo-

sphere [measured by absolute forecast error such as

root-mean-square error (RMSE)], estimate the un-

certainties, and identify the range of possible solutions

associated with a numerical weather prediction (NWP)

model forecast (measured by ensemble spread and en-

semble distribution) (Du 2007; Du and Chen 2010;

Garcia-Moya et al. 2011; Hopson 2014). Ensemble

spread (defined by the standard deviation, unless oth-

erwise specified, of ensemble members with respect to

ensemble mean) is, therefore, used to simulate the

RMSE of ensemble mean forecast in both magnitude

and spatial structure. In a perfect EPS the ensemble

spread andRMSEof the ensemblemean forecast should

be the same (i.e., of equal magnitude and a perfect

correlation in space), and therefore, have the same sta-

tistical distributions between forecast error and spread

when averaged over many cases (Whitaker and Loughe

1998; Du 2012; Du et al. 2014; Fortin et al. 2014).

Such a relationship between spread and forecast error

is called the ‘‘spread–skill relationship.’’ For the cur-

rent operational EPSs around the world, it is reported

that underdispersion (i.e., ensemble spread is signif-

icantly smaller than ensemble mean forecast error)

is unfortunately a common problem. Even for a
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multimodel EPS, this problem remains. For example,

McCollor and Stull (2009) reported that the North

American Ensemble Forecast System suffers under-

dispersion for day-1 through day-6 forecasts although

spread improves with the increase in forecast hour. The

multimodel short-range ensemble prediction system at

the Spanish Meteorological Service is also reported to be

underdispersive (Garcia-Moya et al. 2011). The spatial

correlation between spread and forecast error is also very

low (Stensrud et al. 1999). People normally argue that the

reasonwhy anEPS tends to be underdispersive is because

it does not incorporate all sources of uncertainty (Jolliffe

and Stephenson 2003; Buizza et al. 2005; Ho et al. 2013)

including not accounting for errors in observations (e.g.,

Saetra et al. 2004). In this paper, we demonstrate that

model bias is another major contributor to this ‘‘under-

dispersion’’ phenomenon in terms of verification metrics.

Model bias is common and unavoidable. As Toth et al.

(2003) indicated, ensemble distribution is biased (shifted)

because of inherent deficiencies in themodel and in initial

conditions. Therefore, the error of the ensemble mean

forecast contains a large portion of systematic error (bulk

bias) and does not truly reflect the predictability of the

atmosphere (random portion of error); and the ensemble

distribution is shifted in its mean position and does not

cover the true uncertainties (possibilities) of a forecast.

One can imagine that an inflated ensemble mean forecast

error will lead to a poorer spread–skill relationship; and a

biased or shifted ensemble distribution will lead to a

poorer performance by probabilistic forecasts. In the

past, many studies have shown that removing model bias

can enhance ensemble forecast performance (Hamill and

Colucci 1997; Eckel and Mass 2005; Reynolds et al. 2011;

Cui et al. 2012; Berner et al. 2015). Berner et al. (2015)

quantify the impact of debiasing on forecast skill and

conclude that bias rather than random forecast error is

the leading source of forecast error. They further

demonstrated that including a model-error represen-

tation (stochastic physics) in an EPS can reduce model

bias. Rodwell et al. (2016) even tried to understand how

systematic and random errors contribute to forecast

reliability. However, all these past studies have focused

on improving forecast performance, especially re-

liability, rather than verifying an EPS.

The purpose of this study is focusing on how to correctly

verify an EPS. Since an EPS is designed to deal with a

random error only, not a systematic error of a forecast

system (Du 2007), verifying an EPS using its full error will

not truly reveal what it is intended for (like comparing an

apple with an orange) in principle and can often draw a

wrong conclusion. For example, if an event was missed by

EPSAbut captured byEPSB, people often say ‘‘EPSB is

better than EPS A’’ although the truth could be the

opposite in terms of ensembling quality. The real reason

for the result in this example could simply be thatmodel B

is superior to model A and has nothing to do with the

ensembling technique. To faithfully verify what one really

intended or to have an apples-to-apples comparison, we

argue that an EPS should be verified against a random

error only and not the full error, which is contaminated by

systematic error (first-moment error). A systematic error

only contributes to error but not to diversity, which is the

focus of an EPS. Since most NWP models have biases,

incorrectly assessing EPS quality is believed to be a

common problem. Therefore, it is important to explicitly

address and emphasize this pitfall in verifying an EPS. A

true assessment of an EPS is important for EPS de-

velopers to focus on real problems related to ensembling

techniques but not to the model itself.

The shift of the mean position of an ensemble distribu-

tion will not only affect the ensemble mean but also the

spread–skill relationship and probabilistic forecasts.Model

bias cannot only negatively impact verification metrics

related to the ensemble mean, but also those related to

spread–skill relationships, probabilistic metrics, or any

metrics that involve a comparison to truth. Since model

bias impacts the distribution of forecast errors of the

members, even metrics that do not involve the ensemble

mean will be sensitive to first-moment errors, although the

sensitivity might be less. We attempt to demonstrate all of

these points in our study. In this study we use a real-world

operational EPS to systematically demonstrate howmodel

bias can severely impact the assessment of the EPS quality

by comparing the results of raw and debiased ensemble

forecasts. The paper is organized as follows. In section 2

the EPS configuration, the data used for verification, as

well as the bias correction method are described. The

verification results are presented in section 3. A summary

and discussion are given in section 4.

2. EPS configuration, bias correction method, and
verification data

The Global and Regional Assimilation and Pre-

diction Enhanced System-Regional Ensemble Pre-

diction System (GRAPES-REPS) (Zhang et al. 2014) is

used in this study. It is a mesoscale EPS, first developed

at the NWP center of the China Meteorological Ad-

ministration (CMA) in 2008 and implemented for op-

erations in August 2014. GRAPES-REPS has 15

members (1 control and 14 perturbed) with a horizontal

resolution of 15 km and 50 vertical levels. The boundary

conditions are provided by different members of a

global EPS, which is also running operationally at

CMA. Model uncertainty is taken into account by ap-

plying multiple physics schemes (Stensrud et al. 2000;
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Jones et al. 2007; Du et al. 2015). Initial condition (IC)

uncertainty is addressed by an ensemble transform

Kalman filter (ETKF) scheme (Bishop et al. 2001;

Wang and Bishop 2003; Wang et al. 2004; Bowler et al.

2008; Wei et al. 2008; Kay and Kim 2014). ETKF not

only offers a framework to assess the influence of ob-

servations on forecast error covariance, but also con-

siders the fastest-growing perturbations that evolve

during ensemble forecast cycling. The perturbations

derived from ETKF were added to the GRAPES con-

trol analysis to form perturbed ICs for the perturbed

members. It runs twice a day (at 0000 and 1200 UTC)

out to 72 h of forecast length. For a review of ensemble

methods for meteorological predictions, readers are

referred to Du et al. (2018).

The statistical decaying-average method (Du and

Zhou 2011; Li et al. 2011; Cui et al. 2012) is used to re-

move biases in a forecast. This method uses a simple

decaying average to estimate bias, shown in Eq. (1):

B
i,j
(t)5 (12w)B

i,j
(t2 1)1w3 [ f

i,j
(t)2a

i,j
(t)], (1)

where Bi,j(t2 1) is an accumulated bias from the past,

fi,j(t)2ai,j(t) is the current forecast error (forecast minus

analysis), and w is a selected weight to partition the two

terms. Generally, w is smaller for longer-range forecasts

and larger for shorter-range forecasts because forecast

error at shorter ranges is more flow dependent (i.e.,

weighted more on the current error term). In this study,

w is set to 2% following Cui et al. (2012), which ap-

proximates to a bias accumulated over a 50-day (2% 5
1/50) period from the immediate past. The bias estima-

tion [Eq. (1)] is performed twice daily (at 0000 and 1200

UTC). To have a realistic accumulated ‘‘past bias’’

ready for our verification period (1–31 July), the bias

estimation step starts on 1 May, so it gives us 60 days

(1 May–30 June) prior to our verification starting point

(1 July). A debiased forecast Fi,j(t) can be obtained by

subtracting the decaying averaged bias from a raw

forecast as shown in Eq. (2):

F
i,j
(t)5 f

i,j
(t)2B

i,j
(t) . (2)

To mimic the operational environment and maximize

the benefit from a bias correction, this bias correction

method is independently applied to each ensemble

member at each forecast lead time and each model grid

point for any meteorological variable. By the way, for a

comparison we have also tested using the common bias

in the ensemble mean to correct each member and

FIG. 1. The horizontal distribution of (a) the ensemble mean forecast RMSE, (b) ensemble spread, and (c) the

consistency (defined as the ratio of the RMSE to the spread) at 72-h forecast lead time. (d) The domain-averaged

ensemblemean forecast RMSE (solid line) and ensemble spread (dashed line) varying with forecast hour. The results

are the monthly average for the 0000 UTC cycle during 1–31 Jul 2016. The variable is 500-hPa temperature.
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found that the same result has been reached from the

two approaches. Since the bias is strong and similar

among members in this case, there is not much difference

in the first-moment (ensemble mean) correction between

these two approaches, while it has a benefit of slightly

correcting ensemble spread (being smaller or less un-

certain in forecasts) when correcting the individual

members differently. The three variables (500-hPa and

2-m temperatures, and 250-hPa wind) are shown as

examples in this paper.

Verification is performed daily from 1 to 31 July 2016

for forecasts initialized both at 0000 and 1200 UTC

(a total of 62 forecasts) over China (158–558N, 708–
1408E). These daily results are then averaged to obtain

the July monthly average, which will be presented in

the next section. Since the bias might be different for

different cycles, the monthly averaging is done sepa-

rately for the 0000 and 1200 UTC cycles. Because

the results are almost the same for both cycles, only

the 0000 UTC cycle will be presented in this paper. The

GRAPES 15-km gridded analysis is used as truth.

Given that an analysis itself could contain errors or

biases, verification normally favors a model if it is

verified against its own analysis. Therefore, the un-

derdispersive nature of the GRAPES EPS could be

even more severe than is revealed here if it is verified

against station observations.

3. Results

The scores for measuring an EPS’s quality were

selected based on Du and Zhou (2017). Since en-

semble spread and the probability distribution are the

two main aspects to portray how an EPS performs,

spread–skill relationships and rank histograms are

used to verify ensemble spread, and the continuous

ranked probability score (CRPS), reliability, and

relative operating characteristic (ROC) curve are

used for the probability distribution. For a de-

scription of each of the scoring rules the reader is

referred to Jolliffe and Stephenson (2003), Du (2007),

and Du and Zhou (2017).

a. Ensemble spread

Similarity between ensemble spread and ensemble

mean forecast error is a desired feature. Figures 1a–c

FIG. 2. (a1) The horizontal distribution of ensemble mean forecast bias at 72-h forecast lead time. (b1) The

domain-averaged biases of ensemble mean (red solid line), control forecast (blue dashed line), and perturbed

members (gray dotted line) varying with forecast hour. (a2),(b2) As in (a1),(b1), but for the debiased ensemble

forecasts. The results are the monthly average for the 0000UTC cycle during 1–31 Jul 2016. The variable is 500-hPa

temperature.
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compare the spatial distributions of the ensemble spread

and the ensemble mean forecast RMSE for 500-hPa

temperature at 72-h lead time. The magnitude of en-

semble spread (Fig. 1b) is obviously too small compared

to the ensemble mean forecast RMSE (Fig. 1a) over all

of China for GRAPES-REPS. For example, the maxi-

mum RMSE is 2.8, while the maximum spread is only

1.6. To quantitatively compare spread and RMSE grid

point by grid point, the monthly averaged ‘‘consistency’’

(defined as the ratio of RMSE to ensemble spread with a

perfect consistency of 1.0) is shown in Fig. 1c, which

shows severe underdispersion almost everywhere over

the domain (the ratio � 1.0). Figure 1d shows the evo-

lution of domain-averaged RMSEs and spreads with

forecast hour. First, we can see that this severe under-

dispersion is true not only at the 72-h lead time (1.8 in

FIG. 3. As in Fig. 1, but for the debiased ensemble forecasts.

FIG. 4. The domain-averaged values of (a) consistency and (b) spatial correlation between the ensemble mean

forecast RMSE and ensemble spread before (red) and after (blue) the bias correction, varying with forecast hour.

The results are the monthly average for the 0000 UTC cycle during 1–31 Jul 2016. The variable is 500-hPa tem-

perature. The improvement in consistency is statistically significant at 99.8% level (t test). The improvement in

covariance coefficient is statistically not significant at 12 and 36 h but significant at 90%, 50%, 50%, and 50% levels at

24-, 48-, 60-, and 72-h lead times, respectively.
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RMSE vs 0.95 in spread) but for all forecast lead times.

Second, the growth rate of ensemble spread is lower

than that of forecast error, with the result that the un-

derdispersion becomes more severe as forecast lead

time increases.

The above scores show that the GRAPES-REPS is

severely underdispersive. However, does this result

really reflect a problem in the ensembling technique

used by this EPS or is it mainly a deficiency of the base

model? Figures 2a1 and 2b1 show the forecast bias of

500-hPa temperature, where Fig. 2a1 is the horizontal

distribution of the ensemble mean forecast bias at the

72-h lead time and Fig. 2b1 is the domain-averaged

biases of individual members and the ensemble mean.

It clearly shows that a strong systematic warm bias is

present everywhere for all members. For example, in

the ensemble mean, the maximum monthly average

warm bias exceeds 2.5 K (Fig. 2a1). Since model bias

stems primarily from a deficiency of the model but not

from the ensembling technique (although in certain

circumstances model bias could also stem from an

unrealistic ensemble technique such as ‘‘noise-in-

duced drift’’; Weisheimer et al. 2014), a verification

truly revealing EPS quality should prevent the results

from being contaminated by model bias. Therefore,

we applied the decaying-average bias correction

method [Eqs. (1) and (2)] to each ensemble member

to remove its forecast bias from the raw ensemble

data (see section 2). After removing the bias, both the

ensemble mean (Fig. 2a2) and individual members

(Fig. 2b2) are indeed nearly bias free. Figure 3 re-

peated the results of Fig. 1 but was based on the de-

biased data. Because of the significant error reduction

in debiased ensemble forecasts, ensemble spread

(remaining similar before and after the bias correc-

tion) is now very close to the ensemble mean forecast

RMSE in magnitude for the entire domain (cf.

Figs. 3a and 3b) and all forecast hours (Fig. 3d). Most

areas show a nearly perfect match between ensemble

spread and ensemble mean forecast RMSE in mag-

nitude (the consistency value ranges from 0.75 to 1.25,

the white area in Fig. 3c). The domain-averaged

consistency (Fig. 4a) is now reduced from severe un-

derdispersion (1.4–1.9) to the nearly perfect value

‘‘1.0’’ (1.0–1.3) over all lead times. This improvement

in consistency is statistically significant at the 99.8%

FIG. 5. Spread–skill relationship at 72-h forecast lead time for 500-hPa temperature. (a1),(a2) The scatter diagrams of ‘‘absolute forecast

error of ensemble mean vs ensemble spread’’ for 0000 UTC 1 Jul 2016; (b1),(b2) the average errors (solid lines) of (a1),(a2) (but for the

month of 1–31 Jul 2016) plotted together with the error variance (11 and 21 standard deviation in dashed lines); and (c1),(c2) derived

from (b1),(b2), but directly showing the error variance (2 3 error standard deviation, dashed lines) vs ensemble spread (solid lines). All

the horizontal axes are 12 spread bins (each bin has the same sample size: 13 805 grid points), expressed by the average spreads of each bin

in (a1),(a2) and (b1),(b2) and by bin numbers in (c1),(c2). The raw ensemble is in red, the debiased is in blue. In (a1),(b1),(c1) ‘‘ensemble

spread’’ is defined as the standard deviation of members with respect to the ensemble mean, while in (a2),(b2),(c2) it is defined as the

average distance of members to the ensemble mean to better match the absolute forecast error. The black straight lines in (a1),(a2) and

(b1),(b2) indicate where ‘‘spread is equal to forecast error in magnitude.’’
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level (t test). In other words, without the model bias,

the GRAPES-REPS has a nearly perfect spread size

that can estimate the magnitude of ensemble mean

forecast RMSE quite well.

Besides the size match between spread and en-

semble mean forecast error, ensemble spread is

also expected to simulate the spatial structure of the

ensemble mean forecast error (Du et al. 2014).

Figure 4b is the spatial correlation between ensemble

spread and the ensemble mean forecast RMSE of

500-hPa temperature before and after the bias cor-

rection. Unlike the magnitude improvement, the

improvement in spatial structure matching is not

dramatic but only slight. For example, the correlation

is increased by about 13% from 0.31 (raw forecast) to

0.35 (debiased forecast) at the 72-h lead time. The

improvement is statistically not significant at the 12-

and 36-h lead times but significant at 90%, 50%, 50%,

FIG. 6. The occurrence frequency distributions of absolute forecast error of the ensemble mean (blue) and ensemble spread at the same

magnitude (a1),(b1),(c1) before and (a2),(b2),(c2) after the bias correction at 72-h forecast lead time for (a1),(a2) 500-hPa and (b1),(b2)

2-m temperatures, and (c1),(c2) 250-hPa zonal wind. Statistics are derived from the entiremodel forecast domain over the entiremonth of

July 2016. Here the spread is defined as the average distance of members to the ensemble mean. Note that the same result is seen if spread

is defined as the standard deviation of members with respect to the ensemble mean (not shown).

FIG. 7. (a) The rank histograms at 72-h forecast lead time, and (b) the outliers over forecast hour before (red) and

after (blue) the bias correction. The results are the monthly average for the 0000 UTC cycle during 1–31 Jul 2016.

The variable is 500-hPa temperature. The improvement in the outlier is statistically significant at 99.9% level

(t test).
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and 50% levels at 24-, 48-, 60-, and 72-h lead times,

respectively.

Since the one-to-one relationship between spread

and forecast skill is currently not strong (Whitaker and

Loughe 1998), researchers turned to look at the sta-

tistical relationship between error variance and en-

semble variance (spread-to-spread aspect) aiming to

use ensemble variance to predict error variance but not

the error itself (e.g.,Wang and Bishop 2003; Kolczynski

et al. 2011; Du 2012). Figure 5 shows the error variance

of the ensemble mean forecast over binned ensemble

spread. Ensemble spread is divided into 12 bins be-

tween its minimum and maximum values, where each

bin contains the same number of error samples (13 805

grid points at each bin). Ensemble spread is defined in

two formats: one is the commonly used standard de-

viation (‘‘std’’) of members with respect to the en-

semble mean (Figs. 5a1, 5b1, and 5c1) and another is

the average distance (‘‘ave distance’’) of members to

the ensemble mean (Figs. 5a2, 5b2, and 5c2) particu-

larly defined to better match the error definition (ab-

solute error). The left panel scatter diagrams (Figs. 5a1

and 5a2) show the variation of individual error points

with spread for one cycle (0000 UTC 1 July 2016), the

middle panels (Figs. 5b1 and 5b2) are the averages of

the left panel (but for the entire month of 1–31 July

2016) together with the error variance (11 and 21

error standard deviation in dashed lines), and the right

panels (Figs. 5c1 and 5c2) are the error variance (2 3
error standard deviation, dashed lines) versus ensem-

ble spread (solid lines) over the 12 bins. Although the

general statistical relationships are the same for both

raw (red) and debiased (blue) ensembles [i.e., forecast

error (error variance) increases as spread (ensemble

variance) increases on average (Figs. 5b1, 5b2, 5c1, and

5c2)], the debiased ensemble is better at matching be-

tween error and spread. For the debiased ensemble, not

only is the average error closer to the spread (Figs. 5b1

and 5b2), the error variance is also closer to the en-

semble variance (Figs. 5c1 and 5c2). After the removal

of bias, forecast error variance becomes smaller

indicating a better EPS, which provides a sharper and

more reliable forecast. Figures 6a1 and 6a2 are the

frequency distributions of the forecast error and spread

occurrence at the same magnitude before and after the

bias correction for 500-hPa temperature. The error

FIG. 8. The horizontal distribution of the CRPS for (a) raw and (b) debiased ensemble forecasts, as well as (c) the

difference in CRPS between the two (debiased2 raw) at 72-h forecast lead time. (d) The domain-averaged CRPSs

before (red) and after (blue) the bias correction, varying with forecast hour. The results are themonthly average for

the 0000UTC cycle during 1–31 Jul 2016. The variable is 500-hPa temperature. CRPS is a negatively oriented score,

which is the smaller the better. The reduction in the CRPS is statistically significant at 99.8% level (t test) for all

forecast hours.
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distribution (red) becomes closer to the spread distri-

bution (blue) because of the increase of ‘‘smaller er-

ror’’ and decrease of ‘‘larger error’’ occurrence. In

other words, the ensemble spread represents forecast

error better after the systematic error is removed.Note that

the spread is defined as the average distance ofmembers to

the ensemble mean in Fig. 6 but the same result is seen if

spread is defined as the standard deviation ofmemberswith

respect to the ensemble mean (not shown).

Another common verification metric for ensemble

spread is the rank histograms (Talagrand et al. 1997;

Hamill and Colucci 1997; Hamill 2001; Candille and

Talagrand 2005; Du and Zhou 2017). For an ideal EPS

that can sample forecast uncertainty well, a flat distri-

bution should be expected over n 1 1 sorted bins

ranging from the smallest to the largest values (n is the

total number of ensemble members). The sum of the

two end bins (the ‘‘outlier’’) indicates how often an

observed event falls outside of the ensemble envelope

(being either smaller than the ensemble minimum or

greater than the ensemble maximum at a given location

and time). For a perfect EPS with n members, the

theoretically expected outlier is 2/(n 1 1). Therefore,

the expected outlier for the GRAPES-REPS should be

around 12.5% since it has 15 members. Figure 7a

compares the rank histograms before (red) and after

(blue) the bias correction for 500-hPa temperature at a

72-h lead time. Before the bias correction, the distri-

bution is severely skewed to the left (L shaped)

indicating a strong warm bias, resulting in a much too

high outlier of 34% (Fig. 7b). After the bias correction,

the distribution becomes almost flat (Fig. 7a) and the

outlier is close to the expected value 12.5% over all

forecast lead times (slightly increasing with forecast

hour, Fig. 7b). This improvement is statistically signif-

icant at the 99.9% level based on a t test. The dramatic

change from very bad to near perfect of the GRAPES-

REPS spread (magnitude) before and after the bias

correction demonstrates the importance of removing

forecast bias prior to verifying an ensemble of fore-

casts. Otherwise, the conclusions drawn could be very

misleading.

FIG. 9. Reliability diagrams before (red) and after (blue) bias correction for the forecast lead time at (a) 12, (b) 24, (c) 36, (d) 48, and

(e) 72 h. (f) The average of all forecast hours (12–72 h). Probability of exceeding 28 over climatology is used. The results are the monthly

average for the 0000 UTC cycle during 1–31 Jul 2016. The variable is 500-hPa temperature. The difference between the two is statistically

significant at 99.99% level (t test) for all forecast hours.
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b. Probabilistic forecast

One of the main reasons for employing an ensemble

method to forecast weather is to provide flow-

dependent probabilistic information on a range of pos-

sible solutions. It is reported that an ensemble forecast

can provide skillful probabilistic information valuable to

multiple users related to a particular weather event

(Stensrud and Yussouf 2005). Since the bias in forecasts

will impact the mean position of an ensemble distribu-

tion, probabilistic forecasts should be also significantly

improved if bias is removed from raw ensemble fore-

casts. CRPS is used to measure the absolute error be-

tween forecast probability and observations (either 0%

or 100%) (Hersbach 2000; Grimit et al. 2006; Zhu and

Toth 2008). The smaller the CRPS score, the better the

probabilistic forecast is by exhibiting higher resolution

(sharper) and being more reliable. Figure 8 compares

the CRPS of 500-hPa temperature at the 72-h lead time

before and after the bias correction. The probabilistic

forecast error is indeed much reduced after the bias

is removed (cf. Figs. 8b and 8a). This error reduction

is almost everywhere within the entire domain (all

negative values in Fig. 8c). It is true not only for 72 h but

for all forecast lead times (Fig. 8d). Since the bias grows

with the increase of forecast lead time (Fig. 2b1), the

improvement in probabilistic forecasts also becomes

more prominent with forecast time. This CRPS reduc-

tion is statistically significant at the 99.8% level (t test)

for all forecast hours.

Statistical reliability is another important property of

probabilistic forecasts and key information for cost–lost-

based decision-making (Du and Deng 2010). Reliability

measures whether probabilistic forecasts are statistically

coherent with observations over a large number of cases

for a forecasting system. For a perfectly reliable system

its forecast probabilities should exactly match observed

frequencies. Therefore, in a reliability diagram the di-

agonal line represents perfect reliability. Figure 9 shows

the reliability curves of 500-hPa temperature at different

forecast lead times before and after the bias correction

(probability threshold is defined as 28 over climatologi-

cal value, viz., 128 anomaly threshold). Before the bias

correction, forecast probabilities apparently exceed the

corresponding observed frequencies, indicating that the

GRAPES-REPS is greatly overconfident for all ranges

FIG. 10. ROC diagrams before (red) and after (blue) bias correction for the forecast lead time at (a) 12, (b) 24, (c) 36, (d) 48, and

(e) 72 h. (f) The average of all forecast hours (12–72 h). Probability of exceeding 28 over climatology is used. The results are the monthly

average for the 0000 UTC cycle during 1–31 Jul 2016. The variable is 500-hPa temperature. The difference between the two is statistically

significant at 80%, 95%, 98%, 99%, 99.9%, and 99.5% levels (t test) for 12, 24, 36, 48, 72, and the average of all forecast hours, respectively.
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of probabilities because of the strong warm bias. How-

ever, after removing the warm bias the reliability curves

almost coincide with the perfect diagonal line. In other

words, originally overconfident probability becomes

perfectly reliable. This improvement is statistically sig-

nificant at the 99.99% level for all forecast hours (t test).

Since relative operating characteristics (ROC) is less

sensitive to forecast bias, Fig. 10 compares the ROC

curves of 500-hPa temperature at different forecast lead

times before and after the bias correction (the proba-

bility threshold is the same as used for the reliability

calculation). It shows that the improvements with the

bias removed are statistically significant at all forecast

lead times in a t test (80%, 95%, 98%, 99%, and 99.9%

for 12, 24, 36, 38, and 72h, respectively). All the CRPS,

reliability, and ROC results above demonstrate that a

poor probabilistic forecast derived from the raw en-

semble forecasts is not due to the deficiency of EPS

design but the deficiency of the model itself (strong

warm bias). Therefore, without removing model bias,

ensemble verification metrics cannot truly reflect the

quality of an EPS.

Since the bias of surface variables is normally less

uniform in space than that of upper-air variables, we

have repeated the above experiment with 2-m temper-

ature that possesses an even stronger bias. The results

are presented in Figs. 11 and 12. Qualitatively speak-

ing, the result is the same as what we have seen for the

500-hPa temperature. The strong warm bias of the raw

forecasts (Figs. 11a1 and 11b1) has been noticeably re-

duced by the bias correction procedure for all individual

members including the ensemble mean (Figs. 11a2 and

11b2). The comparison of verification results between

the raw and debiased ensembles is summarized by

Fig. 12 and Figs. 6b1 and 6b2. Similar to the 500-hPa

temperature, significant improvements have been seen

in both ensemble spread quality (Figs. 12a–c and

Figs. 6b1 and 6b2) and probabilistic forecasts (Figs. 12d–f)

after the bias is corrected. As a result one’s view toward

the GRAPES EPS will also be very different, as it

changes from a poor EPS to a reasonably good EPS.

Once again this suggests that without removing model

bias, ensemble verification metrics will give us a wrong

impression about an EPS’s performance.

c. Ensemble verification with little model bias

The above results have demonstrated that without

removing model bias, the conclusion drawn from veri-

fication will be very misleading about the quality of an

EPS. However, one can imagine that removing the bias

should have little impact on the verification result if a

field has no or little bias. To prove this we chose 250-hPa

FIG. 11. As in Fig. 2, but for 2-m temperature.
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zonal wind U to demonstrate since it has little or weak

systematic bias in the raw forecasts, as shown in

Figs. 13a1 and 13b1 (slight low bias in wind speed).

Unlike the 500-hPa and 2-m temperature forecasts

(Figs. 2 and 11), the bias correction procedure has much

less impact on either the ensemble mean forecast or

individual members of 250-hPaU (Figs. 13a2 and 13b2).

The comparisons of verification summary statistics be-

fore and after the bias correction are presented in Fig. 14

and Figs. 6c1 and 6c2. It is shown that the bias correction

indeed has only a minor impact on the assessment of all

aspects of ensemble quality including the spread–skill

relationship (Figs. 14a,b and Figs. 6c1 and 6c2), spread

distribution and outlier (Fig. 14c), and the sharpness and

reliability of probabilistic forecasts (Figs. 14d–f). The

probability threshold ‘‘exceeding 5m s21 over climatol-

ogy’’ is used in Figs. 14e and 14f. Only slight improve-

ments are seen given the weak wind bias in the raw

forecasts. This slight difference in verification metrics

certainly will not change the assessment conclusion

about GRAPES-REPS quality for 250-hPa U forecasts.

4. Summary and discussion

This study demonstrates how model bias can ad-

versely affect the assessment about the quality of an EPS

using common ensemble verification metrics. The

15-member GRAPES-REPS was verified twice daily

FIG. 12. (a) The domain-averaged ensemble mean RMSE (solid line) vs ensemble spread (dashed line), (b) rank

histograms (72 h), (c) spread–skill relation (72 h), (d) the domain-averaged CRPS, (e) reliability diagram (72 h),

and (f) ROCdiagram (72 h) before (red) and after (blue) the bias correction. Probability of exceeding 208C is used for

(e),(f). The results are the monthly average for the 0000 UTC cycle during 1–31 Jul 2016. The variable is 2-m

temperature.
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(at 0000 and 1200 UTC) over China for a period of one

month (1–31 July 2016). Three variables (500-hPa and

2-m temperatures, and 250-hPa wind) are selected to

represent ‘‘strong bias’’ (both at upper air and surface)

and ‘‘weak bias’’ situations, respectively. Ensemble

spread and probabilistic forecast are assessed and

compared before and after a bias correction. The

spread–skill relationship (ensemble mean forecast error

vs spread and error variance vs ensemble variance) and

rank histograms are used to verify the quality of en-

semble spread; CRPS, reliability diagrams, and ROC

curves are used to measure the quality of probabilistic

forecasts. The decaying-average method is used in the

bias correction, which is done for each ensemble mem-

ber and each forecast hour separately to mimic an op-

erational environment as well as to maximize its benefit.

The results show that the conclusions drawn from

ensemble verification about the EPS quality are dra-

matically different with or without model bias. This is

true for both ensemble spread and probabilistic fore-

casts. For example, for 500-hPa and 2-m temperatures

the GRAPES-REPS is severely underdispersive before

the bias correction but becomes nearly perfect after it

although the improvement in the spread’s spatial

structure is much less. The spread–skill relationship is

noticeably improved too. For the debiased ensemble,

not only is the average error closer to the spread, the

error variance is also closer to the ensemble variance;

the error distribution becomes closer to the spread dis-

tribution in their occurrence frequency over the entire

forecast domain. The probabilistic forecasts become

much sharper and almost perfectly reliable after the bias

is removed. All these differences are statistically sig-

nificant based on a t test. Since the forecast’s systematic

error or bulk bias stems primarily from a model de-

ficiency but not from the ensembling technique, it

mainly reflects the quality of a model but not that of an

EPS. Therefore, it is necessary to remove systematic

(bulk) forecast biases before one can accurately evalu-

ate an EPS. Only when anEPS has no or little systematic

forecast bias can ensemble verification metrics reliably

reveal the true quality of anEPSwithout having removed

the forecast bias first. This is proved by the 250-hPa wind

forecasts. In principle, since an EPS is designed to deal

with random error only and not the systematic error of a

forecast system, verifying an EPS using its full error

cannot truly reveal for what an EPS is intended. Instead,

it is the random error component that needs to be used

for verifying an EPS. Note that not all bias can be easily

removed in a forecast. The bias that can be removed is

normally the systematic bulk bias, not the flow-

dependent bias. Bulk bias mainly impacts the mean

position of an ensemble distribution, while flow-

dependent bias could impact the ensemble distribution

FIG. 13. As in Fig. 2, but for 250-hPa zonal wind U.
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itself. By the way, it needs to be pointed out that a bias

correction approach is used to remove systematic error

as an approximation in this study, which is suitable and

probably the only way for real-time forecasts in an op-

erational environment. Since this bias correction ap-

proachworked very effectively for this case (as shown by

Figs. 2 and 11), it has served well as a demonstration in

this study. However, for the purpose of a pure EPS

verification, it is recommended that the total forecast

error should be decomposed into random and system-

atic errors before we verify an EPS. An EPS should be

strictly verified against the random component but not

the systematic component. This study confirms that

model bias will not only negatively impact verification

metrics related to ensemble mean, but also those related

to spread–skill relation and probabilistic forecasts.

Negative impacts have been also seen even for those

verification metrics that do not directly involve mean

position but compare ensemble distributions such as

ensemble variance versus forecast error variance, al-

though their sensitivity might be in a lesser degree.

We are confident that the conclusion from this study can

be generalized to a multimodel EPS. Removing forecast

bias might be even more important for a multimodel EPS

situation. For example, opposite biases could present in

different participating models, which leads to large but

spurious and even overdispersive spread such as in the

NCEP SREF (Du et al. 2015). However, a bias correction

should correct this fake ‘‘overdispersion’’ result. Given our

results, the implication seems to be that unrealistic EPS

probabilities may be less due to imperfections in EPS

methodologies and more due to model bias. And, hence,

both deterministic and EPS guidance will be improved by

addressing those biases. In other words, EPS developers

FIG. 14. As in Fig. 12, but for 250-hPa zonal wind U. Probability of exceeding 5 m s21 over climatology is used

for (e),(f).
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should not be expected to introduce methods to dramati-

cally increase ensemble spread (either by perturbation

method or statistical calibration to its second moment) to

achieve reliability. Instead, the preferred solution is to re-

duce the model’s first-moment bias through prediction

system developments including better model-perturbing

methods to enhance the quality of spread (not the quantity

of spread). Stochastic physics is one suchmodel-perturbing

method. Since some model biases can in part be due to

suboptimal methods of treating model uncertainty like

‘‘noise-induced drift,’’ bettermodel uncertainty treatments

such as stochastic physics will help to not only increase

ensemble spread but also reduce model bias (Berner et al.

2015). Another implication of this study is that forecast

products should be produced from debiased ensembles

rather than raw ensembles when the model bias is sub-

stantial. Otherwise, bias in the ensemble mean will lead to

errors in the ensemble estimation of the probability dis-

tribution of possible true states.

Finally, one needs to keep in mind that even though a

perfect reliability has been achievedwith nomodel bias for

anEPS, improving ensemble technique is still needed given

currently low and imperfect spread–skill relation as shown

by Figs. 4b, 5, and 6. As Whitaker and Loughe (1998) in-

dicated that we want an EPS to predict flow-dependent

variations in spread. The more an EPS is capable of pre-

dicting large variations in spread while remaining reliable,

the more useful and skillful it is. Therefore, EPS develop-

ment that contributes to this is still important.
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